datasheetbank_Logo
数据手册搜索引擎和 Datasheet免费下载 PDF

A1213(2013) 查看數據表(PDF) - Allegro MicroSystems

零件编号
产品描述 (功能)
比赛名单
A1213
(Rev.:2013)
Allegro
Allegro MicroSystems Allegro
A1213 Datasheet PDF : 14 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
A1210, A1211,
A1212, A1213,
and A1214
Continuous-Time Latch Family
Functional Description
OPERATION
The output of these devices switches low (turns on) when a
magnetic field perpendicular to the Hall element exceeds the
operate point threshold, BOP. After turn-on, the output is capable
of sinking 25 mA and the output voltage is VOUT(SAT). Notice
that the device latches; that is, a south pole of sufficient strength
towards the branded surface of the device turns the device on,
and the device remains on with removal of the south pole. When
the magnetic field is reduced below the release point, BRP,
the device output goes high (turns off). The difference in the
magnetic operate and release points is the hysteresis, Bhys, of
the device. This built-in hysteresis allows clean switching of the
output, even in the presence of external mechanical vibration and
electrical noise.
Powering-on the device in the hysteresis range, less than BOP
and higher than BRP, allows an indeterminate output state. The
correct state is attained after the first excursion beyond BOP or
BRP.
CONTINUOUS-TIME BENEFITS
Continuous-time devices, such as the A121x family, offer the
fastest available power-on settling time and frequency response.
Due to offsets generated during the IC packaging process,
continuous-time devices typically require programming after
packaging to tighten magnetic parameter distributions. In con-
trast, chopper-stabilized switches employ an offset cancellation
technique on the chip that eliminates these offsets without the
need for after-packaging programming. The tradeoff is a longer
settling time and reduced frequency response as a result of the
chopper-stabilization offset cancellation algorithm.
The choice between continuous-time and chopper-stabilized
designs is solely determined by the application. Battery manage-
ment is an example where continuous-time is often required. In
these applications, VCC is chopped with a very small duty cycle
in order to conserve power (refer to figure 2). The duty cycle
is controlled by the power-on time, tPO, of the device. Because
continuous-time devices have the shorter power-on time, they
are the clear choice for such applications.
For more information on the chopper stabilization technique,
refer to Technical Paper STP 97-10, Monolithic Magnetic Hall
Sensing Using Dynamic Quadrature Offset Cancellation and
Technical Paper STP 99-1, Chopper-Stabilized Amplifiers with a
Track-and-Hold Signal Demodulator.
(A)
V+
VCC
(B)
VS
VCC
A121x VOUT
RL
Output
0
B–
0
VOUT(SAT)
B+
GND
BHYS
Figure 1. Switching Behavior of Latches. On the horizontal axis, the B+ direction indicates increasing south polarity magnetic field strength, and the
B– direction indicates decreasing south polarity field strength (including the case of increasing north polarity). This behavior can be exhibited when
using a circuit such as that shown in Panel B.
Allegro MicroSystems, LLC
9
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]