datasheetbank_Logo
数据手册搜索引擎和 Datasheet免费下载 PDF

MC145482DW 查看數據表(PDF) - Motorola => Freescale

零件编号
产品描述 (功能)
生产厂家
MC145482DW
Motorola
Motorola => Freescale Motorola
MC145482DW Datasheet PDF : 19 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
connected to the VAG voltage. This minimizes transients at
the RO– pin when full–channel operation is resumed by
clocking the FSR pin. This pin is high impedance when the
device is in the powered–down mode.
PI
Power Amplifier Input (Pin 3)
This is the inverting input to the PO– amplifier. The non–
inverting input to the PO– amplifier is internally tied to the
VAG pin. The PI and PO– pins are used with external resis-
tors in an inverting op amp gain circuit to set the gain of the
PO+ and PO– push–pull power amplifier outputs. Connect-
ing PI to VDD will power down the power driver amplifiers and
the PO+ and PO– outputs will be high impedance.
PO–
Power Amplifier Output (Inverting) (Pin 4)
This is the inverting power amplifier output, which is used
to provide a feedback signal to the PI pin to set the gain of
the push–pull power amplifier outputs. This pin is capable of
driving a 300 load to PO+. The PO+ and PO– outputs are
differential (push–pull) and capable of driving a 300 load to
3.15 V peak, which is 6.3 V peak–to–peak. The bias voltage
and signal reference of this output is the VAG pin. The VAG
pin cannot source or sink as much current as this pin, and
therefore low impedance loads must be between PO+ and
PO–. The PO+ and PO– differential drivers are also capable
of driving a 100 resistive load or a 100 nF Piezoelectric
transducer in series with a 20 resister with a smalll in-
crease in distortion. These drivers may be used to drive re-
sistive loads of 32 when the gain of PO– is set to 1/4 or
less. Connecting PI to VDD will power down the power driver
amplifiers, and the PO+ and PO– outputs will be high imped-
ance. This pin is also high impedance when the device is
powered down by the PDI pin.
PO+
Power Amplifier Output (Non–Inverting) (Pin 5)
This is the non–inverting power amplifier output, which is
an inverted version of the signal at PO–. This pin is capable
of driving a 300 load to PO–. Connecting PI to VDD will
power down the power driver amplifiers and the PO+ and
PO– outputs will be high impedance. This pin is also high im-
pedance when the device is powered down by the PDI pin.
See PI and PO– for more information.
DIGITAL INTERFACE
MCLK
Master Clock (Pin 11)
This is the master clock input pin. The clock signal applied
to this pin is used to generate the internal 256 kHz clock and
sequencing signals for the switched–capacitor filters, ADC,
and DAC. The internal prescaler logic compares the clock on
this pin to the clock at FST (8 kHz) and will automatically
accept 256, 512, 1536, 1544, 2048, 2560, or 4096 kHz. For
MCLK frequencies of 256 and 512 kHz, MCLK must be syn-
chronous and approximately rising edge aligned to FST. For
optimum performance at frequencies of 1.536 MHz and
higher, MCLK should be synchronous and approximately ris-
ing edge aligned to the rising edge of FST. In many ap-
plications, MCLK may be tied to the BCLKT pin.
FST
Frame Sync, Transmit (Pin 14)
This pin accepts an 8 kHz clock that synchronizes the out-
put of the serial PCM data at the DT pin. This input is com-
patible with both Long Frame Sync and Short Frame Sync. If
both FST and FSR are held low for several 8 kHz frames, the
device will power down. FST must be clocking for the device
to power up affter being powered down by the frame syncs.
BCLKT
Bit Clock, Transmit (Pin 12)
This pin controls the transfer rate of transmit PCM data. In
the synchronous modes of sign–bit extended and receive
gain adjust, the BCLKT also controls the transfer rate of the
receive PCM data. This pin can accept any bit clock frequen-
cy from 256 to 4096 kHz for Long Frame Sync and Short
Frame Sync timing.
DT
Data, Transmit (Pin 13)
This pin is controlled by FST and BCLKT and is high im-
pedance except when outputting PCM data. This pin is high
impedance when the device is in the powered–down mode.
FSR
Frame Sync, Receive (Pin 7)
This pin accepts an 8 kHz clock, which synchronizes the
input of the serial PCM data at the DR pin. FSR can be
asynchronous to FST in the Long Frame Sync or Short
Frame Sync modes.
BCLKR
Bit Clock, Receive (Pin 9)
This pin accepts any bit clock frequency from 256 to 4096
kHz. The BCLKR pin is also used as a mode select pin when
not being clocked for several 8 kHz frames. The BCKLT pin
is used to clock the receive PCM data transfers when the
BCLKR pin is not being clocked. When the BCLKR pinis a
logic 0, the sign–bit extended synchronous mode is selected,
which uses 16–bit transfers with the first four bits being the
sign bit. When the BCLKR pin is a logic 1, the receive gain
adjust synchronous mode is selected, which uses a 13–bit
transfer for the transmit PCM data, but uses a 16–bit transfer
for the receive side, with the 13–bit voice data being first, fol-
lowed by three bits which control the attenuation of the re-
ceive analog output.
DR
Data, Receive (Pin 8)
This pin is the PCM data input. See the pin descriptions for
FSR, BCLKR, and BCKLT for more information.
MC145482
4
MOTOROLA

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]