datasheetbank_Logo
数据手册搜索引擎和 Datasheet免费下载 PDF

LT1614 查看數據表(PDF) - Linear Technology

零件编号
产品描述 (功能)
比赛名单
LT1614
Linear
Linear Technology Linear
LT1614 Datasheet PDF : 16 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
LT1614
U
OPERATIO
The LT1614 combines a current mode, fixed frequency
PWM architecture with a –1.23V reference to directly
regulate negative outputs. Operation can be best under-
stood by referring to the block diagram of Figure 2. Q1 and
Q2 form a bandgap reference core whose loop is closed
around the output of the converter. The driven reference
point is the lower end of resistor R4, which normally sits
at a voltage of –1.23V. As the load current changes, the
NFB pin voltage also changes slightly, driving the output
of gm amplifier A1. Switch current is regulated directly on
a cycle-to-cycle basis by A1’s output. The flip-flop is set at
the beginning of each cycle, turning on the switch. When
the summation of a signal representing switch current and
a ramp generator (introduced to avoid subharmonic oscil-
lations at duty factors greater than 50%) exceeds the VC
signal, comparator A2 changes stage, resetting the flip-
flop and turning off the switch. Output voltage decreases
(the magnitude increases) as switch current is increased.
The output, attenuated by external resistor divider R1 and
R2, appears at the NFB pin, closing the overall loop.
Frequency compensation is provided externally by a series
RC connected from the VC pin to ground. Typical values
are 100k and 1nF. Transient response can be tailored by
adjustment of these values.
As load current is decreased, the switch turns on for a
shorter period each cycle. If the load current is further
decreased, the converter will skip cycles to maintain
output voltage regulation.
VIN
+
SHUTDOWN
L1
C1
VIN
SW
LT1614
SHDN
VC
10Ok
NFB
GND
1nF
C2
1µF
R1
R2
10k
D2
D1
–VOUT
C3
The LT1614 can work in either of two topologies. The
simpler topology appends a capacitive level shift to a
boost converter, generating a negative output voltage,
which is directly regulated. The circuit schematic is de-
tailed in Figure 3. Only one inductor is required, and the
two diodes can be in a single SOT-23 package. Output
noise is the same as in a boost converter, because current
is delivered to the output only during the time when the
LT1614’s internal switch is on.
If D2 is replaced by an inductor, as shown in Figure 4, a
higher performance solution results. This converter topol-
ogy was developed by Professor S. Cuk of the California
Institute of Technology in the 1970s. A low ripple voltage
results with this topology due to inductor L2 in series with
the output. Abrupt changes in output capacitor current are
eliminated because the output inductor delivers current to
the output during both the off-time and the on-time of the
LT1614 switch. With proper layout and high quality output
capacitors, output ripple can be as low as 1mVP–P.
The operation of Cuk’s topology is shown in Figures 5
and␣ 6. During the first switching phase, the LT1614’s
switch, represented by Q1, is on. There are two current
loops in operation. The first loop begins at input capacitor
C1, flows through L1, Q1 and back to C1. The second loop
flows from output capacitor C3, through L2, C2, Q1 and
back to C3. The output current from RLOAD is supplied by
L2 and C3. The voltage at node SW is VCESAT and at node
SWX the voltage is –(VIN + |VOUT|). Q1 must conduct both
L1 and L2 current. C2 functions as a voltage level shifter,
with an approximately constant voltage of (VIN + |VOUT|)
across it.
C2
L1
1µF
L2
VIN
+
SHUTDOWN
VIN
SW
C1
LT1614
SHDN
VC
10Ok
NFB
GND
1nF
D1
R1
R2
10k
–VOUT
C3
1614 F03
Figure 3. Direct Regulation of Negative Output
Using Boost Converter with Charge Pump
1614 F04
Figure 4. L2 Replaces D2 to Make Low Output Ripple
Inverting Topology. Coupled or Uncoupled Inductors Can
Be Used. Follow Phasing If Coupled for Best Results
6

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]