datasheetbank_Logo
数据手册搜索引擎和 Datasheet免费下载 PDF

ISL8002 查看數據表(PDF) - Renesas Electronics

零件编号
产品描述 (功能)
比赛名单
ISL8002
Renesas
Renesas Electronics Renesas
ISL8002 Datasheet PDF : 23 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
ISL8002, ISL8002A, ISL80019, ISL80019A
Thermal ShutDown
The device has built-in thermal protection. When the internal
temperature reaches +150°C, the regulator is completely
shutdown. As the temperature drops to +125°C, the device
resumes operation by stepping through the soft-start.
Power Derating Characteristics
To prevent the ISL8002 from exceeding the maximum junction
temperature, some thermal analysis is required. The
temperature rise is given by Equation 2:
TRISE = PDJA
(EQ. 2)
where PD is the power dissipated by the regulator and θJA is the
thermal resistance from the junction of the die to the ambient
temperature. The junction temperature, TJ, is given by
Equation 3:
TRISE = TA + TRISE
(EQ. 3)
where TA is the ambient temperature. For the DFN package, the
θJA is +71°C/W.
The actual junction temperature should not exceed the absolute
maximum junction temperature of +125°C when considering
the thermal design.
The ISL8002 delivers full current at ambient temperatures up to
+85°C; if the thermal impedance from the thermal pad
maintains the junction temperature below the thermal shutdown
level, depending on the input voltage/output voltage
combination and the switching frequency. The device power
dissipation must be reduced to maintain the junction
temperature at or below the thermal shutdown level. Figure 55
illustrates the approximate output current derating versus
ambient temperature for the ISL8002 EVAL1Z kit.
2.5
2.0
1.5
1V
1.5V
1.0
2.5V
3.3V
0.5
VIN = 5V, OLFM
0
50
60
70
80
90
100 110 120 130
TEMPERATURE (°C)
FIGURE 55. DERATING CURVE vs TEMPERATURE
Applications Information
Output Inductor and Capacitor Selection
To consider steady state and transient operations,
ISL8002A/ISL80019A typically requires a 1.2µH and
ISL8002/ISL80019 typically requires a 2.2µH output inductor.
Higher or lower inductor value can be used to optimize the total
converter system performance. For example, for higher output
voltage 3.3V application, in order to decrease the inductor ripple
current and output voltage ripple, the output inductor value can
be increased. It is recommended to set the inductor ripple
current to be approximately 30% of the maximum output current
for optimized performance. The inductor ripple current can be
expressed as shown in Equation 4:
I = -V----O----L--------1-F----S–----W-V--V-------I--O--N-------
(EQ. 4)
The inductor’s saturation current rating needs to be at least
larger than the peak current.
The device uses internal compensation network and the output
capacitor value is dependent on the output voltage. The ceramic
capacitor is recommended to be X5R or X7R.
Output Voltage Selection
The output voltage of the regulator can be programmed via an
external resistor divider that is used to scale the output voltage
relative to the internal reference voltage and feed it back to the
inverting input of the error amplifier (see Figure 35).
The output voltage programming resistor, R2, will depend on the
value chosen for the feedback resistor and the desired output
voltage of the regulator. The value for the feedback resistor is
typically between 10kΩ and 100kΩas shown in Equation 5.
R1 = R2V---V--F--O--B-- – 1
(EQ. 5)
If the output voltage desired is 0.6V, then R2 is left unpopulated
and R1 is shorted. There is a leakage current from VIN to LX. It is
recommended to preload the output with 10µA minimum. For
better performance, add 22pF in parallel with R1Check loop
analysis before use in application.
Input Capacitor Selection
The main functions for the input capacitor are to provide
decoupling of the parasitic inductance and to provide filtering
function to prevent the switching current flowing back to the
battery rail. At least two 22µF X5R or X7R ceramic capacitors are
a good starting point for the input capacitor selection.
Output Capacitor Selection
An output capacitor is required to filter the inductor current.
Output ripple voltage and transient response are 2 critical factors
when considering output capacitance choice. The current mode
control loop allows for the usage of low ESR ceramic capacitors
and thus smaller board layout. Electrolytic and polymer
capacitors may also be used.
Additional consideration applies to ceramic capacitors. While
they offer excellent overall performance and reliability, the actual
in-circuit capacitance must be considered. Ceramic capacitors
are rated using large peak-to-peak voltage swings and with no DC
bias. In the DC/DC converter application, these conditions do not
reflect reality. As a result, the actual capacitance may be
considerably lower than the advertised value. Consult the
manufacturers data sheet to determine the actual in-application
capacitance. Most manufacturers publish capacitance vs DC bias
so this effect can be easily accommodated. The effects of AC
FN7888 Rev 4.00
July 31, 2014
Page 19 of 23

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]