datasheetbank_Logo
数据手册搜索引擎和 Datasheet免费下载 PDF

AD7391AR 查看數據表(PDF) - Analog Devices

零件编号
产品描述 (功能)
比赛名单
AD7391AR Datasheet PDF : 12 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
AD7390/AD7391
The AD7390 should be powered directly from the system
power supply. This arrangement, shown in Figure 6, employs an
LC filter and separate power and ground connections to isolate
the analog section from the logic switching transients.
FERRITE BEAD:
TWO TURNS, FAIR-RITE
TTL/CMOS
#2677006301
LOGIC
CIRCUITS
5V
100F
ELECT.
10F22F
TANTALUM
0.1F
CERAMIC
CAPACITOR
5V
RETURN
5V
POWER SUPPLY
Figure 6. Use Separate Traces to Reduce Power
Supply Noise
Whether or not a separate power supply trace is available, how-
ever, generous supply bypassing will reduce supply-line induced
errors. Local supply bypassing consisting of a 10 µF tantalum
electrolytic in parallel with a 0.1 µF ceramic capacitor is recom-
mended in all applications (Figure 7).
2.7V TO 5.5V
*
LD
CLK
SDI
CLR
C
8
7
REF VDD
1 AD7390 6
2
OR
3 AD7391
4
GND
5
0.1F
10F
VOUT
*OPTIONAL EXTERNAL
REFERENCE BYPASS
Figure 7. Recommended Supply Bypassing
INPUT LOGIC LEVELS
All digital inputs are protected with a Zener-type ESD protection
structure (Figure 8) that allows logic input voltages to exceed the
VDD supply voltage. This feature can be useful if the user is driving
one or more of the digital inputs with a 5 V CMOS logic input-
voltage level while operating the AD7390/AD7391 on a 3 V power
supply. If this mode of interface is used, make sure that the VOL
of the 5 V CMOS meets the VIL input requirement of the AD7390/
AD7391 operating at 3 V. See TPC 6 for a graph for digital
logic input threshold versus operating VDD supply voltage.
VDD
LOGIC
IN
GND
Figure 8. Equivalent Digital Input ESD Protection
In order to minimize power dissipation from input-logic levels that
are near the VIH and VIL logic input voltage specifications, a
Schmitt trigger design was used that minimizes the input-buffer
current consumption compared to traditional CMOS input
stages. TPC 5 shows a plot of incremental input voltage versus
supply current showing that negligible current consumption
takes place when logic levels are in their quiescent state. The
normal crossover current still occurs during logic transitions. A
secondary advantage of this Schmitt trigger is the prevention of
false triggers that would occur with slow moving logic transi-
tions when a standard CMOS logic interface or opto isolators
are used. The logic inputs SDI, CLK, LD, CLR all contain the
Schmitt trigger circuits.
DIGITAL INTERFACE
The AD7390/AD7391 have a double-buffered serial data input.
The serial-input register is separate from the DAC register,
which allows preloading of a new data value into the serial regis-
ter without disturbing the present DAC values. A functional
block diagram of the digital section is shown in Figure 4, while
Table I contains the truth table for the control logic inputs.
Three pins control the serial data input. Data at the Serial Data
Input (SDI) is clocked into the shift register on the rising edge
of CLK. Data is entered in MSB-first format. Twelve clock
pulses are required to load the 12-bit AD7390 DAC value. If
additional bits are clocked into the shift register, for example
when a microcontroller sends two 8-bit bytes, the MSBs are
ignored (Figure 9). The CLK pin is only enabled when Load
(LD) is high. The lower resolution 10-bit AD7391 contains a
10-bit shift register. The AD7391 is also loaded MSB first with
10 bits of data. Again if additional bits are clocked into the shift
register, only the last 10 bits clocked in are used.
The Load pin (LD) controls the flow of data from the shift
register to the DAC register. After a new value is clocked into
the serial-input register, it will be transferred to the DAC register
by the negative transition of the Load pin (LD).
MSB
BYTE 1
LSB MSB
BYTE 0
LSB
B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0
X X X X D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
X X X X X X D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
D11D0: 12-BIT AD7390 DAC VALUE; D9D0: 10-BIT AD7391 DAC VALUE
X = DONT CARE
THE MSB OF BYTE 1 IS THE FIRST BIT THAT IS LOADED INTO THE DAC
Figure 9. Typical AD7390-Microprocessor Serial Data
Input Forms
RESET (CLR) PIN
Forcing the CLR pin low will set the DAC register to all zeros
and the DAC output voltage will be zero volts. The reset function
is useful for setting the DAC outputs to zero at power-up or
after a power supply interruption. Test systems and motor
controllers are two of many applications which benefit from
powering up to a known state. The external reset pulse can be
generated by the microprocessors power-on RESET signal, by
an output from the microprocessor, or by an external resistor
and capacitor. CLR has a Schmitt trigger input which results in
a clean reset function when using external resistor/capacitor
generated pulses. The CLR input overrides other logic inputs,
specifically LD. However, LD should be set high before CLR
goes high. If CLR is kept low, then the contents of the shift
register will be transferred to the DAC register as soon as CLR
returns high. See the Control-Logic Truth Table I.
REV. A
–9–

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]