datasheetbank_Logo
数据手册搜索引擎和 Datasheet免费下载 PDF

IDT82V2052E 查看數據表(PDF) - Integrated Device Technology

零件编号
产品描述 (功能)
比赛名单
IDT82V2052E
IDT
Integrated Device Technology IDT
IDT82V2052E Datasheet PDF : 70 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
IDT82V2052E
DUAL CHANNEL E1 SHORT HAUL LINE INTERFACE UNIT
TTIPn
IDT82V2052E
TRINGn
RLOAD
VOUT
Note: 1. For RLOAD = 75 (nom), Vout (Peak)=2.37V (nom)
2. For RLOAD =120 (nom), Vout (Peak)=3.00V (nom)
Figure-4 E1 Pulse Template Test Circuit
3.2.3.2 User-Programmable Arbitrary Waveform
When the PULS[3:0] bits are set to ‘11xx’, user-programmable arbitrary
waveform generator mode can be used in the corresponding channel. This
allows the transmitter performance to be tuned for a wide variety of line con-
dition or special application.
Each pulse shape can extend up to 4 UIs (Unit Interval), addressed by
UI[1:0] bits (TCF3, 07H...) and each UI is divided into 16 sub-phases,
addressed by the SAMP[3:0] bits (TCF3, 07H...). The pulse amplitude of
each phase is represented by a binary byte, within the range from +63 to -
63, stored in WDAT[6:0] bits (TCF4, 08H...) in signed magnitude form. The
most positive number +63 (D) represents the maximum positive amplitude
of the transmit pulse while the most negative number -63 (D) represents the
maximum negative amplitude of the transmit pulse. Therefore, up to 64
bytes are used. For each channel, a 64 bytes RAM is available.
There are two standard templates which are stored in an on-chip ROM.
User can select one of them as reference and make some changes to get
the desired waveform.
User can change the wave shape and the amplitude to get the desired
pulse shape. In order to do this, firstly, users can choose a set of waveform
value from the following two tables, which is the most similar to the desired
pulse shape. Table-2 and Table-3 list the sample data and scaling data of
each of the two templates. Then modify the corresponding sample data to
get the desired transmit pulse shape.
Secondly, through the value of SCAL[5:0] bits increased or decreased
by 1, the pulse amplitude can be scaled up or down at the percentage ratio
against the standard pulse amplitude if needed. For different pulse shapes,
the value of SCAL[5:0] bits and the scaling percentage ratio are different.
The following two tables list these values.
Do the followings step by step, the desired waveform can be pro-
grammed, based on the selected waveform template:
(1).Select the UI by UI[1:0] bits (TCF3, 07H...)
(2).Specify the sample address in the selected UI by SAMP [3:0] bits
(TCF3, 07H...)
(3).Write sample data to WDAT[6:0] bits (TCF4, 08H...). It contains the
data to be stored in the RAM, addressed by the selected UI and the
corresponding sample address.
(4).Set the RW bit (TCF3, 07H...) to ‘0’ to implement writing data to RAM,
or to ‘1’ to implement read data from RAM
(5).Implement the Read from RAM/Write to RAM by setting the DONE
bit (TCF3, 07H...)
Repeat the above steps until all the sample data are written to or read
from the internal RAM.
(6).Write the scaling data to SCAL[5:0] bits (TCF2, 06H...) to scale the
amplitude of the waveform based on the selected standard pulse
amplitude
When more than one UI is used to compose the pulse template, the over-
lap of two consecutive pulses could make the pulse amplitude overflow
(exceed the maximum limitation) if the pulse amplitude is not set properly.
This overflow is captured by DAC_OV_IS bit (INTS1, 19H...), and, if
enabled by the DAC_OV_IM bit (INTM1, 14H...), an interrupt will be gen-
erated.
FUNCTIONAL DESCRIPTION
18
December 12, 2005

Share Link: 

datasheetbank.com [ Privacy Policy ] [ Request Datasheet ] [ Contact Us ]